Saturn's magnetic field and dynamo

Ulrich Christensen Max Planck Institute for Solar System Research, Göttingen, Germany

> Hao Cao & Krishan Khurana UCLA, Los Angeles, USA

Michele Dougherty Imperial College, London, UK

Unlike siblings

Jupiter's field 15xEarth's Similar proportion of nonzonal to zonal field as Earth. Dipole tilt 10°

Saturn's field 0.7xEarth's

No nonzonal field detected so far. Dipole tilt 0° within error

Plan of the talk (and chapter)

- 1. Observations of Saturn's magnetic field
- 1.1 Flyby magnetometer measurements: Pioneer 11, Voyager 1 & 2
- **1.2 Cassini magnetometer measurements**
- 2. Saturn magnetic field models
- 2.1 External magnetic field and field separation
- 2.2 Internal magnetic field models
- 2.3 Search for non-axisymmetric field components
- 2.4 Secular variation

3. Saturn's dynamo

- **3.1 Fundamentals of planetary dynamos**
- 3.2 Saturn's internal structure: properties relevant for the dynamo
- 3.3 Dynamo models with stably stratified layer
- 3.4 Other dynamo models and perspectives

Gauss coefficients

$$\mathbf{B} = -grad \ V$$

$$V = R_p \sum_{n=1}^{\infty} \left(\frac{R_p}{r}\right)^{n+1} \sum_{m=0}^{n} P_n^m (\cos\theta) \left(g_n^m \cos m\phi + h_n^m \sin m\phi\right)$$

Representation of field B by scalar potential V expandedin spherical harmonic functionsGauss, 1839

Saturn flyby measurements

- Pioneer 11 passed at 1.4 R_s on 9/1/1979
- He vector magnetometer
- Field weaker and magnetosphere smaller than anticipated
- Dipolar field
- B_o component tiny dipole tilt < 1°
- Voyager 1 3.4 R_s 1980
- Voyager 2 2.7 R_s 1981

Cassini SOI & primary mission

T_{rot}=10:39:22

Orbital arcs inside Enceladus L-shell (3.95 Rs)

External field contribution

~ 5 nT

- Time-variable (stochastic) field:
- \Rightarrow Noise

Steady ring current / magnetopause current field: ~ 15 nT

 \Rightarrow To be modelled

Compare with intrinsic field at ~ 3 Rs:dipole:800 nTquadrupole:20 nToctupole:9 nT

Model of ring current field

Inside 3.5 Rs homogeneous within 1 nT Little local time dependence

Magnetic field model

Table Mode	e 1. Spherica	ll Harmonic Co This Study ^a	efficients for (in nT)	r the Axisyn	nmetric	
	This study	Cassini	Cassini(SOI)	Z3	SPV	
g_{10}	21136 (.60)	21153	21162	21248	21225	Dipole
g ₂₀	1526 (.37)	1576	1514	1613	1566	Quadrupole
g ₃₀	2219 (.90)	2267	2283	2683	2332	Octupole
G_{10}	-11.6	External field of				
G_{11}	04	magnetospheric				
H_{11}	14	currents	(Burton et al., 2010)			

Z3 (Connerney et al., 1984) and SPV (Davis & Smith, 1990) from Pioneer-Voyager data

"Cassini" (Burton et al., 2009) based on 3 yr Cassini data

"This study" (Burton et al., 2009) based on 4 yr Cassini data including orbits 70-78 within 2.7 Rs and latitude coverage up to $\pm 30^{\circ}$

Later model (Cao et al., 2011) with additional data similar

Beyond the octupole

Blue: Difference between degree 3 internal model and observation at SOI

Broken part of lines: r < 2.2 Rs closest at 1.35 Rs

Pink: Fit with model for ring current plus g₄₀ and g₅₀

Assumption: Non-zonal terms negligible also at n=4 and 5

Field up to n=5

Magnetic flux concentration

Magnetic flux concentrated into polar cap region inside Saturn

Search for non-zonal field

No unambiguous evidence for non-zonal field (same result by Sterenborg & Bloxham, 2010, and by Cao et al., 2011) Max. dipole tilt compatible with data is 0.06°

Secular variation: Expectation

Earth: U ~ 1 mm/s L ~ 3000 km L/U ~ 100 yr τ_o ~ 450 yr Saturn: U ~ 10 mm/s L~30,000 km \Rightarrow τ_o ~ 450 yr \Rightarrow Similar rates of secular variation for Earth and Saturn ?

Secular change Pioneer - Cassini

	Coefficients	Cassini (Rev 3–126)	SPV	
TI	g ⁰ g ⁰ g ⁰ g ⁰	$21,191 \pm 24$ 1586 ± 7 2374 ± 47	21,225 1566 2332	
	g ₁₀	g ₂₀	g ₃₀	
Earth	19.6	16.7	4.2	nT/yr
Saturn	-1.2±1.6	0.7±0.5	1.5±3.2	nT/yr

Secular variation small, or zero within error

Cao et al., 2011

Requirements for dynamo

- Fluid electrically conducting layer (metallic hydrogen)
- Sufficiently rapid motion: magnetic Reynolds no. Rm= UL/ $\eta > 50$ (thermal convection, Rm ~ $10^4 - 10^5$)
- Suitable pattern of motion, e.g. helical (Coriolis forces: Saturn is a rapid rotator)

Scaling field strength

Field strength ∞ cubic root of available energy flux

Christensen & Aubert, 2006; Aubert et al., 2009; Christensen et al., 2009; Christensen, 2010

What must a good Saturn dynamo model be able to explain ?

- The field strength or dipole moment of Saturn (lower than expected from scaling laws)
- The extreme degree of axisymmetry (nonwithstanding Cowling's theorem)
- The concentration of magnetic flux into the polar regions (at depth inside the planet)
- The small rate of secular variation

Stevenson's model

He rain depletes upper layer in helium and provides extra energy to enhance **luminosity (or retard** cooling) He rain creates electrically conducting stably stratified layer above the dynamo (Stevenson, 1980)

He immiscibility

Ab-initio calculations suggest that He may rain out all the way to the rocky core (and form He ocean above core)

Dynamo below He-rain layer

Field strength for deep dynamo

With the top of Saturn's dynamo at 0.4 Rs rather than at 0.6 Rs the observed field complies with the scaling relation Christensen, 2010

A Gedankenexperiment

Numerical dynamo models

- Convection-driven MHD dynamo models in rotating and electrically conducting spherical shells
- Demonstration of principle: Influence of conducting stably-stratified layer above dynamo region

Magnetic field snapshots

Dynamo generates strong nonzonal field component, which is largely filtered out by stable layer

Mercury model with stable layer

- Field inside active dynamo region is strong, small-scaled and varies rapidly.
- Field at planetary surface is weak, large-scaled, and varies slowly. Field strength agrees with observation.
 - Christensen, 2006

Christensen & Wicht, 2008

Skin effect

- Time series Gauss coefficient g₂₁
- Elimination of high frequencies
- Damping of low frequencies
- Phase shift

(Ganymede model, Christensen, in prep.)

Score of model with dynamo below stable layer

E)

E

E

(6)

- Field strength
- High degree of axisymmetry
- Small rate of secular variation
- Polar flux concentration

Polar flux concentration: Taylor-Couette dynamo

Taylor-Couette dynamo: flow driven by faster rotation ofinner core: Strong flux emanating at poles (Cao et al., 2012)But unclear what would drive differential rotation in Saturn

Outlook: Proximal mission

- If power continues to drop off as odd degrees 1, 3, 5 then the field up to degree 9 at least can be determined
- Nonzonal field components with g_{nm}>15 nT can be detected

Zonal winds and dynamo ?

Stevenson's model

He rain depletes upper layer in helium and provides extra energy to enhance luminosity (or retard cooling) He rain creates electrically conducting stably stratified layer above the dynamo (Stevenson, 1980)